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Viscous fingering in porous media at large Péclet numbers is subject to an unsolved
selection problem, not unlike the Saffman–Taylor problem. The mixing zone predicted
by the entropy solution is found to spread much faster than is observed experimentally
or from fine-scale numerical simulations. In this paper we apply a recent approach
by Menon & Otto (Commun. Math. Phys., vol. 257, 2005, p. 303), to develop bounds
for the mixing zone. These give growth velocities smaller than the entropy solution
result (M − 1/M). In particular, for an exponential viscosity-concentration mixing
rule, the mixing zone velocity is bounded by (M − 1)2/(M lnM), which is smaller
than (M − 1/M). An extension to a porous medium with an uncorrelated random
heterogeneity is also given.

1. Introduction
Viscous fingering in miscible displacements in porous media has been extensively

investigated in the past. The origin of the instability was discussed in pioneering
works by Saffman & Taylor (1958), in the context of immiscible displacement in a
Hele-Shaw cell, and by Wooding (1969) in the context of miscible displacement, also
in a Hele-Shaw cell. Viscous fingering in porous media has been extensively analysed
(e.g. see reviews by Homsy 1987; Tanveer 2000 and a more recent analysis by Yang,
Yortsos & Salin 2002). The instability is long-wave, developing, in the absence of
gravity, when the ratio of viscosities between displaced and displacing fluids is greater
than one. Gravity also exerts a long-wave effect, and can be stabilizing or destabilizing,
depending on the direction of the displacement and the density of the fluids involved.
A number of experimental, theoretical and numerical works have recently been
devoted to the understanding of various aspects of the instability (Manickam &
Homsy 1991; Zimmerman & Homsy 1992; Loggia et al. 1995; Tanveer 2000; Smirnov
et al. 2005). Despite the considerable work done, however, an important issue has
remained unresolved so far, namely the selection of the spreading of the mixing zone.

Consider miscible displacement in the absence of gravity in a two-dimensional
porous medium of a rectilinear geometry (dimensions L and H , respectively, e.g. see
figure 1): fluid 1, initially in the porous medium, is displaced at constant injection
rate q by fluid 2, miscible with the former, and with lower viscosity (µ1 > µ2). The
resulting unstable displacement will be parameterized using the local concentration
c, where c = 0 corresponds to the initial fluid and c = 1 to the injected. Following
the onset of instability, a mixing zone develops. Under conditions of high Péclet
number (Pe � 1), where convection dominates, the mixing zone spreads linearly in
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Figure 1. Schematic of the problem considered. Fluid 2 miscibly displaces a more viscous
fluid 1 in the direction indicated. The geometry of the displacement is rectilinear. Viscous
fingers develop as a result of the instability.

time, the leading edge traveling asymptotically with velocity v1 and the trailing edge
with velocity v2. Determining the two velocities is important for a number of reasons,
including an understanding of the efficiency of the displacement. However, their
precise determination has so far eluded past investigators.

When the instability has fully developed, the displacement reaches an asymptotic
regime, which Yortsos (1995) termed as the state of transverse flow equilibrium
(TFE) (generalizing the earlier terminology of vertical flow equilibrium (VFE), e.g.
Lake 1989). In this regime, the flow is essentially parallel, the pressure gradient in
the flow direction x being independent of the transverse coordinate y to leading-
order in the variable H/L. (Typically, in reservoir-engineering-related problems y

is the vertical coordinate, hence the VFE terminology). In his seminal paper, in the
context of gravity-driven miscible instability in a Hele-Shaw cell, Wooding (1969) also
proposed a corresponding regime (discussed further below). Under these conditions,
it was shown by Yortsos (1995) that to leading-order the streamwise velocity u is an
explicit function of the mobility, given in dimensionless notation by

u =
kλ∫ 1

0

kλ dy

(1.1)

where k is a normalized permeability, lengths have been scaled with the thickness H ,
and we have defined the dimensionless mobility

λ(c) =
µ1

µ(c)
. (1.2)

The latter is a function of the local concentration field c, such that λ(0) = 1 and
λ(1) = M > 1, where M is the end-point viscosity ratio. For future reference we note
the exponential model

λ(c) = exp(Rc) (1.3)

where R = ln M . In the above, we have assumed that the medium is in general
heterogeneous, k = k(x). In the sections that follow we will restrict our attention to a
homogeneous medium and take k = 1, however. An extension to the heterogeneous
case will be briefly presented at the end of the paper. The problem is completed with
mass balances for the solute and the solvent

∂c

∂t
+

⎛
⎜⎜⎝ λ(c)∫ 1

0

λ(c) dy

⎞
⎟⎟⎠ ∂c

∂x
+ w

∂c

∂y
=

1

Pe
∇2c (1.4)
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Figure 2. (a) A typical viscous fingering pattern (numerical simulations) under conditions
of transverse flow equilibrium (TFE) and for a viscosity ratio M = 10. The pattern has
the typical features of the viscous instability. Lines correspond to different iso-concentration
contours. (b) Transverse-average concentration profiles of (a), versus the velocity of average
concentration, for M = 10. The open circles correspond to different numerical simulation runs.
The lines close to the data correspond to a proposed model (from Yang et al. (2002)).

and
∂u

∂x
+

∂w

∂y
= 0 (1.5)

where w is the transverse velocity and Pe denotes the Péclet number.
Yang et al. (2002) studied the linear stability of the TFE formulation and showed

that it contains both the long-wave fingering instability and the stabilizing influence
of dispersion, as expected, thus representing a good limiting model of the problem.
Yang & Yortsos (1998) and Yang et al. (2002) explored numerically the properties
of the developed instability and showed that it displays typical aspects of viscous
fingering patterns, including tip splitting, shielding and finger coalescence (Homsy
1987) (e.g. see figure 2). In particular, the simulations of Yang et al. (2002) show that
the resulting mixing zone is largest under TFE conditions, hence any estimates of its
length will also bound the mixing zone length under other than TFE conditions.

2. The transverse-averaged equation and the entropy solution
In conjunction with the TFE expression (1.1) and the continuity equation (1.5),

equation (1.4) can be integrated over the transverse coordinate y to give the transverse-
average equation

∂c

∂t
+

∂

∂x

⎛
⎜⎜⎝

∫ 1

0

λ(c)c dy

∫ 1

0

λ(c) dy

⎞
⎟⎟⎠ =

1

Pe

∂2c

∂x2
(2.1)



228 Y. C. Yortsos and D. Salin

where the overbar denotes average across y. To proceed further, the ‘fractional flow’
function in the convective term on the left-hand side

F (c) = uc =

∫ 1

0

λ(c)c dy

∫ 1

0

λ(c) dy

(2.2)

must be expressed. A tempting, but as will turn out näıve, choice is to assume that in
the fingering pattern all fingered regions have the same maximum local concentration
c = 1 and all non-fingered regions the same minimum concentration c = 0. This
assumption is based on neglecting local mixing due to molecular diffusion, thus of
any zone of graded mobility. Then, the fractional flow becomes

Fn(C) =
MC

(MC + 1 − C)
. (2.3)

In the fingering case (M > 1), this function is convex. Using (2.3) in (2.1) we obtain

∂c

∂t
+

∂

∂x

(
Mc

Mc + 1 − c

)
=

1

Pe

∂2c

∂x2
. (2.4)

Its solution in the high-Pe limit, with initial condition c = 0 for x > 0 and c = 1 for
x < 0, is the rarefaction

c = 1 for x < t/M, c = 0 for x > tM (2.5)

and

c =
1

M − 1

[√
Mt

x
− 1

]
for t/M < x < tM. (2.6)

Equation (2.6) states that in the entropy solution, the mixing zone spreads convectively,
with a leading velocity equal to M and a trailing velocity equal to 1/M .

Experiments and numerical simulations of the full problem, including in the TFE
regime, however, show conclusively that the true leading velocity is smaller than
M and that the trailing-edge velocity is larger than 1/M . A number of empirical
models have been proposed to reconcile this behaviour (Koval 1963; Fayers 1988;
Fayers, Jouaux & Tchelepi 1994; Todd & Longstaff 1972). For example, Koval (1963)
postulated empirically that (2.3) is valid, provided that the end-point viscosity ratio
M is replaced by an effective viscosity ratio Meff , corresponding to an effective
concentration in the fingered region ceff =0.26 to reflect local mixing, which even
under high-Pe conditions cannot be neglected. A similar approach was used by Todd &
Longstaff (1972). Yang et al. (2002) extensively reviewed these approaches and
proposed semi-empirical models of their own. Despite the fact that such models
appear to work in practice, a theoretical justification is yet to be obtained, however.

The situation is somewhat analogous to the Saffman & Taylor (1958) (ST) selection
problem for viscous fingers in a Hele-Shaw cell: it is not difficult to show that in
the TFE limit, the fractional flow function corresponding to the ST problem is the
same as (2.3), with the understanding that it should be further considered in the
limit M � 1. As is well known, in the absence of interfacial tension the ST finger
selected is not the energetically more favourable, namely the one corresponding to the
rarefaction (2.6) with an infinitely fast tip and a vanishing small thickness, but rather
one that moves with velocity 2 and has a thickness of 1/2. Finding the selection rule



On the selection principle for viscous fingering in porous media 229

in the ST problem remained unresolved for several decades, until it was formulated
by a number of authors as a problem in asymptotics of all orders (Pelce 1988). To
our knowledge, such an analogy has not yet been carried over to the miscible viscous
fingering problem.

In a recent paper, Menon & Otto (2005) addressed the related problem of the
Rayleigh–Taylor instability in a porous medium, which is the problem studied in a
Hele-Shaw cell by Wooding (1969). These authors also focused attention on the TFE
regime, using equations developed by Wooding. The corresponding expression for the
streamwise velocity is

u = gx

[
ρ(c) −

∫ 1

0

ρ(c) dy

]
(2.7)

which is the equivalent to (1.1), and where gx is the acceleration due to gravity in the
direction of displacement. Consider next that the density is a linear function of the
local concentration, and further take gxρ̇ = −1, which will induce instability when x

is in the direction opposite to gravity. Here, ρ̇ > 0 is the derivative of the density with
respect to concentration. Then, (2.7) becomes u = c − c. The counterpart of equation
(1.4) is now

∂c

∂t
+ [c̄ − c]

∂c

∂x
+ w

∂c

∂y
=

1

Pe
∇2c (2.8)

and the equation corresponding to (2.4) is

∂c̄

∂t
+

∂

∂x
(c̄2 − c̄) =

1

Pe

∂2c̄

∂x2
. (2.9)

As before, the ‘fractional flow’ in the näıve approach (c2 = c) is

Fg(C) = C2 − C, (2.10)

the hyperbolic equation in the high-Pe limit under this condition is

∂c̄

∂t
+

∂

∂x
(c̄2 − c̄) = 0 (2.11)

and the entropy solution is the rarefaction:

c̄ = 0 for x < −t, c̄ = 1 for x > t (2.12)

and

c̄ =
1

2

[
1 +

x

t

]
for − t < x < t. (2.13)

This solution predicts a mixing zone that grows with a dimensionless velocity of 2.
As in the viscous fingering case, however, this rate of growth overpredicts the true
spreading, where the zone grows with dimensionless velocity 1. Menon & Otto (2005)
made a fundamental breakthrough by showing that, in fact, the corresponding front
velocities of the full problem cannot exceed the value of one half (hence, the mixing
zone grows with a velocity not greater than one), as described below.

3. The Menon & Otto (2005) approach to the Wooding instability
The ingenious argument of Menon & Otto (2005) is based on bounding the solution

both from above and from below by functions which propagate at a dimensionless
speed of one half. An upper-bound solution was constructed by defining c∗(t, x),
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Figure 3. Transverse-average concentration profiles in the Rayleigh–Taylor instability in a
porous medium, considered by Menon & Otto (2005). Shown are the upper and lower bounds,
c∗ and c∗, respectively. The dashed line is the entropy solution (2.13). The true solution is
schematically shown by the dash-dot line.

which solves the Burgers’ equation

∂c∗

∂t
− ∂

∂x

(
c∗2

2

)
=

1

Pe

∂2c∗

∂x2
(3.1)

subject to c∗ = 1 + ε and c∗ = ε at ±∞, where 0 < ε � 1. Equation (3.1) admits a
travelling wave solution propagating at the constant speed

vg,ε = − 1
2

− ε (3.2)

where we used subscript g to indicate the gravity instability problem. Menon & Otto
(2005) used the maximum principle, by comparing the solution of (3.1) with that of
the full problem (2.8), to show that c∗ is an upper bound to the actual value (see
figure 3). It follows that the downwards spreading of the mixing zone cannot travel
faster than the velocity (3.2), which in the limit ε → 0 is in absolute value equal to
one half.

Likewise, they constructed the lower bound by defining

∂c∗

∂t
+

∂

∂x

(
(1 − c∗)

2

2

)
=

1

Pe

∂2c∗

∂x2
(3.3)

subject to the boundary conditions c∗ = 1 − ε and c∗ = −ε at ±∞. A solution of (3.3)
is again a travelling wave, now propagating at the speed

vε
g = 1

2
+ ε. (3.4)

Again application of the maximum principle Menon & Otto (2005) shows that c∗
is a lower bound to the full solution (figure 3), hence the upwards spreading of the
mixing zone cannot travel with a velocity larger than vε

g , which in the small-ε limit
reduces to one half.

4. Bounds on the viscous fingering instability
Motivated by Menon & Otto’s work we apply the same arguments in order to

bound the mixing zone growth in the viscous fingering case. Because of the presence
of the transverse-averaged term in (2.1), however, we need to proceed somewhat
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Figure 4. Transverse-average concentration profiles in the viscous fingering instability in a
porous medium, considered in this paper. Shown are the upper and lower bounds, c∗ and c∗,
respectively. The dashed line is the entropy solution (2.6). The true solution is schematically
shown by the dash-dot line.

differently. First, we note that

1 <

∫ 1

0

λ(c) dy < M. (4.1)

Thus, we can construct an upper bound by defining

∂c∗

∂t
+ λ(c∗)

∂c∗

∂x
=

1

Pe

∂2c∗

∂x2
(4.2)

subject to c∗ = ε and c∗ = 1 + ε at ±∞, where 0 < ε � 1. This comparison equation
is obtained from (1.4) by setting c = 0 in the integral of the mobility function in the
second term on the left-hand side. Equation (4.2) admits the travelling wave solution

∫ c∗

ε

λ(c) dc − vε
v(c

∗ − ε) =
1

Pe

∂c∗

∂x
(4.3)

which can be further integrated into an explicit form, if necessary. In the limit of
high Péclet numbers, of interest in this paper, this solution is a shock connecting the
upstream value c∗ = 1+ ε to the downstream value c∗ = ε (figure 4). The correspond-
ing velocity is obtained by evaluating (4.3) at c∗ = 1 + ε to find

vε
v =

∫ 1+ε

ε

λ(c) dc. (4.4)

As shown below, c∗ bounds the actual solution from above, hence the leading edge
cannot travel faster than the velocity (4.4). For the exponential viscosity model (1.3),
and in the limit of small ε, equation (4.4) further implies

v0
v =

M − 1

lnM
. (4.5)

This upper bound clearly satisfies 1 < v0
v < M (see also figure 5), thus demonstrating

a slowdown of the true solution, compared to the näıve one, due to transverse mixing
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Figure 5. The variation of the velocities of the trailing and leading edges of the mixing zone
in the viscous fingering problem, as a function of the viscosity ratio for an exponential viscosity
profile. Solid line: the upper and lower bound solutions. Dashed line: the entropy solutions.

and diffusion. For a more general mobility function,

v0
v =

∫ 1

0

λ(c) dc.

To derive a lower bound, we define

∂c∗

∂t
+

λ(c∗)

M

∂c∗

∂x
=

1

Pe

∂2c∗

∂x2
(4.6)

subject to c∗ = −ε and c∗ = 1 − ε at ±∞, where 0 < ε � 1. This comparison equation
is obtained from (1.4) by setting c = 1 in the integral of the mobility function in the
second term on the left-hand side. In the large time limit, equation (4.6) admits a
travelling wave solution

∫ c∗

−ε

λ(c) dc

M
− vv,ε(c∗ + ε) =

1

Pe

∂c∗

∂x
(4.7)

which can be further integrated into an explicit form, if needed. Again, in the limit of
high Péclet numbers, of interest in this paper, this solution is a shock connecting the
upstream value 1 − ε to the downstream value −ε (figure 4). Its velocity is obtained
by evaluating (4.7) at c∗ = 1 − ε to yield

vv,ε =

∫ 1−ε

−ε

λ(c) dc

M
. (4.8)

The function c∗ bounds the actual solution from below, as will be shown later, hence
the trailing edge cannot travel slower than the value given by (4.8). For example,
for the exponential viscosity model (1.3) and in the limit of small ε, equation (4.8)
leads to

vv,0 =
M − 1

M lnM
. (4.9)
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This lower bound to the trailing velocity clearly satisfies 1/M < vv,0 < 1 (see also
figure 5). Again, for a more general mobility profile we should use

vv,0 =

∫ 1

0

λ(c) dc

M
,

instead. The above show that for the exponential model, the mixing zone length cannot
spread faster than [(M − 1)2/(M lnM)t], namely with velocity (M − 1)2/(M lnM)
smaller than the näıve (M − 1/M). Analogous results hold for the more general
viscosity–concentration relation.

4.1. Proofs

To prove that c∗ is an upper bound, we repeat the argument of Menon & Otto (2005)
rephrased as follows. We subtract (1.4) from (4.2) and rearrange:

∂θ

∂t
+

⎛
⎜⎜⎝λ(c∗) − λ(c)∫ 1

0

λ(c) dy

⎞
⎟⎟⎠ ∂c∗

∂x
+

λ(c)∫ 1

0

λ(c) dy

∂θ

∂x
+w

∂θ

∂y
− 1

Pe
∇2θ =

⎛
⎜⎜⎝ λ(c∗)∫ 1

0

λ(c) dy

− λ(c∗)

⎞
⎟⎟⎠ ∂c∗

∂x

(4.10)

where we define θ = c∗ − c. We note that due to (4.1) the second term on the right-
hand side of (4.10) is positive. Also, as θ → 0, the second term on the left-hand side
becomes proportional to θ ,

λ(c∗) − λ(c)∫ 1

0

λ(c) dy

→ λ′(c̃)∫ 1

0

λ(c) dy

θ,

where c̃ is between c∗ and c. Menon & Otto (2005) applied the maximum principle to
a similar equation, and showed that if θ > 0 at t = 0, it remains positive at all times.
The same argument carries through to equation (4.10). It relies on showing that θ � 0
cannot be a minimum, and it is based on the fact that in that limit, the left-hand side
tends to −(1/Pe)∇2θ , and the right-hand side is positive. Both these conditions are
satisfied in equation (4.10), hence we conclude that indeed c∗ is an upper bound.

A similar analysis applies for the lower bound. Subtracting (4.6) from (1.4) leads to
the following equation corresponding to (4.10):

∂θ

∂t
+

⎛
⎜⎜⎝λ(c) − λ(c∗)∫ 1

0

λ(c) dy

⎞
⎟⎟⎠ ∂c∗

∂x
+

λ(c)∫ 1

0

λ(c) dy

∂θ

∂x
+w

∂θ

∂y
− 1

Pe
∇2θ =

⎛
⎜⎜⎝λ(c∗)

M
− λ(c∗)∫ 1

0

λ(c) dy

⎞
⎟⎟⎠ ∂c∗

∂x

(4.11)

where we define θ = c − c∗. For the same reasons as above, θ > 0, hence c∗ is a lower
bound to c.

4.2. The weak-instability limit

For completeness, it is worth noting that in the weak-instability limit, the viscous
problem becomes identical to the one analysed by Menon & Otto (2005). Indeed, if
λ̇ = M − 1 is small,

λ ≈ 1 + (M − 1)c (4.12)
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in which case equation (1.4) becomes

∂c

∂t
+ (1 + (M − 1)[c − c̄])

∂c

∂x
+ w

∂c

∂y
=

1

Pe
∇2c. (4.13)

Subject to a change in coordinates and a rescaling, this is identical to the gravity
problem discussed in Menon & Otto (2005). Proceeding as before it is not difficult
to show that the leading-edge velocity is bounded above by (M + 1)/2 < M and the
trailing-edge velocity bounded below by (3−M)/2 > 1/M . Both expressions (M+1)/2
and (3 − M)/2 are asymptotic limits of (4.5) and (4.9) when M − 1 � 1.

4.3. Extension to heterogeneous media

The above can be extended to the fingering problem in certain classes of heterogeneous
media. We will proceed with the assumption of uncorrelated random heterogeneity

and take
∫ 1

0
k dy = 1. We will now construct an upper bound by defining

∂c∗

∂t
+ kuλ(c

∗)
∂c∗

∂x
=

1

Pe

∂2c∗

∂x2
(4.14)

subject to c∗ = ε and c∗ = 1 + ε at ±∞, where 0 < ε � 1. The parameter ku is
determined by considering the counterpart of (4.10), which here is

∂θ

∂t
+ k

⎛
⎜⎜⎝ λ(c∗) − λ(c)∫ 1

0

kλ(c) dy

⎞
⎟⎟⎠ ∂c∗

∂x
+

kλ(c)∫ 1

0

kλ(c) dy

∂θ

∂x
+ w

∂θ

∂y
− 1

Pe
∇2θ

=

⎛
⎜⎜⎝ kλ(c∗)∫ 1

0

kλ(c) dy

− kuλ(c
∗)

⎞
⎟⎟⎠ ∂c∗

∂x
. (4.15)

Following the same rationale as in the homogeneous case, it is not difficult to show
that we must require

kλ(c∗)∫ 1

0

kλ(c) dy

− kuλ(c
∗) < 0,

which suggests the choice

ku = max
k∫ 1

0

kλ(c) dy

.

This is always satisfied by ku = kmax . Then, by proceeding as previously, we will have,
e.g. for the exponential model,

v0
v = kmax

(M − 1)

lnM
. (4.16)

The corresponding lower bound is defined as the solution of

∂c∗

∂t
+

klλ(c∗)

M

∂c∗

∂x
=

1

Pe

∂2c∗

∂x2
(4.17)
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subject to c∗ = −ε and c∗ = 1 − ε at ±∞, where 0 < ε � 1. The constant kl is
determined by considering the counterpart of (4.11)

∂θ

∂t
+ k

⎛
⎜⎜⎝λ(c) − kλ(c∗)∫ 1

0

kλ(c) dy

⎞
⎟⎟⎠ ∂c∗

∂x
+

kλ(c)∫ 1

0

kλ(c) dy

∂θ

∂x
+ w

∂θ

∂y
− 1

Pe
∇2θ

=

⎛
⎜⎜⎝klλ(c

∗)

M
− kλ(c∗)∫ 1

0

kλ(c) dy

⎞
⎟⎟⎠ ∂c∗

∂x
. (4.18)

Now, the required condition is

klλ(c
∗)

M
− kλ(c∗)∫ 1

0

kλ(c) dy

< 0,

which suggests

kl = M min
k∫ 1

0

kλ(c) dy

,

and which is always satisfied by kl = kmin. Proceeding as previously, we will have for
the exponential model

vv,0 = kmin

(M − 1)

M lnM
. (4.19)

Combining the two expressions (4.16) and (4.19) we see that for the exponential
model, the spreading velocity of the mixing zone is bounded by H (M − 1)2/(M lnM),
where the heterogeneity factor is H = (Mkmax − kmin)/(M − 1). The result reduces to
the previous one for the homogeneous case and to the expected velocity kmax − kmin

in the passive tracer case (M = 1).

5. Concluding remarks
In this paper we provide bounds on the problem of viscous fingering in porous

media, and specifically on the leading- and trailing-edge velocities of the mixing zone.
These bounds show that the actual solution does not grow as fast as predicted by the
näıve solution of the transverse-averaged equations, based on the entropy solution of
the resulting hyperbolic equation. This result is consistent with experimental studies
and fine-scale numerical simulations in viscous fingering, and it is the first time that
it has been proved rigorously. Whether these bounds are tight is not known, however.
It is conceivable that tighter bounds do exist.

Although bounding the concentration profile, the solutions derived do not provide
useful expressions for its details. Thus, they are unable to prove or disprove the validity
of the typical approximations made, e.g. by Todd & Longstaff (1972), in which the
fractional flow expression (2.3) is used for the transverse-average concentration, but
with an appropriately adjusted effective viscosity ratio Meff < M . Additional work
in this direction is necessary. On the other hand, they provide a rigorous foundation
that explains the retardation of the leading edge through transverse mixing.
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The failure of the entropy solution to describe the actual evolution of the
transversely averaged profile was observed before in a number of previous applications
involving parallel flow. For example, Yang & Yortsos (1998) and Shariati et al. (2004)
discussed this inadequacy in the context of Stokes flow between two parallel plates,
and for a number of viscosity profiles. In particular, the latter study suggested that
higher-dimensionality phenomena at the front cannot be captured by simple transverse
averaging, which reduces the dimensionality of the problem. Non-classical shocks of
the type introduced by Lefloch (2002) could potentially reconcile this problem.
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Y.C.Y. acknowledges the warm hospitality of Laboratoire FAST, Universités P. et M.
Curie and Paris Sud, where part of this work was conducted.
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